Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tunable Surface Electron Spin Splitting with Electric Double-Layer Transistors Based on InN

Identifieur interne : 000063 ( Chine/Analysis ); précédent : 000062; suivant : 000064

Tunable Surface Electron Spin Splitting with Electric Double-Layer Transistors Based on InN

Auteurs : RBID : Pascal:13-0219751

Descripteurs français

English descriptors

Abstract

Electrically manipulating electron spins based on Rashba spin-orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an electric field perpendicular to the 2DES. Here, by measuring the tunable circular photogalvanic effect (CPGE), we present a room-temperature electric-field-modulated spin splitting of surface electrons on InN epitaxial thin films that is a good candidate to realize spin injection. The surface band bending and resulting CPGE current are successfully modulated by ionic liquid gating within an electric double-layer transistor configuration. The clear gate voltage dependence of CPGE current indicates that the spin splitting of the surface electron accumulation layer is effectively tuned, providing a way to modulate the injected spin polarization in potential spintronic devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0219751

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Tunable Surface Electron Spin Splitting with Electric Double-Layer Transistors Based on InN</title>
<author>
<name>CHUNMING YIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100871</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HONGTAO YUAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo</s1>
<s2>Tokyo, 113-8656</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokyo, 113-8656</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XINQIANG WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100871</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHITAO LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100871</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHAN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100871</wicri:noRegion>
</affiliation>
</author>
<author>
<name>NING TANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100871</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FUJUN XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100871</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHUOYU CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo</s1>
<s2>Tokyo, 113-8656</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokyo, 113-8656</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shimotani, Hidekazu" uniqKey="Shimotani H">Hidekazu Shimotani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo</s1>
<s2>Tokyo, 113-8656</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokyo, 113-8656</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iwasa, Yoshihiro" uniqKey="Iwasa Y">Yoshihiro Iwasa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo</s1>
<s2>Tokyo, 113-8656</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokyo, 113-8656</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONGHAI CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratory of Semiconductor Materials Science, Institute of Semiconductors, CAS</s1>
<s2>Beijing, 100083</s2>
<s3>CHN</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEIKUN GE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, Tsinghua University</s1>
<s2>Beijing, 100084</s2>
<s3>CHN</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100084</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BO SHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100871</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0219751</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0219751 INIST</idno>
<idno type="RBID">Pascal:13-0219751</idno>
<idno type="wicri:Area/Main/Corpus">000B57</idno>
<idno type="wicri:Area/Main/Repository">000283</idno>
<idno type="wicri:Area/Chine/Extraction">000063</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bending</term>
<term>Electric field effect</term>
<term>Epitaxial film</term>
<term>Gallium tellurides</term>
<term>Gates</term>
<term>III-V compound</term>
<term>Indium nitride</term>
<term>Ionic liquid</term>
<term>JJ coupling</term>
<term>Polarization potential</term>
<term>Quantum computation</term>
<term>Rashba effect</term>
<term>Spin injection</term>
<term>Spin polarization</term>
<term>Spintronics</term>
<term>Temperature distribution</term>
<term>Thin film</term>
<term>Transistor</term>
<term>Two dimensional system</term>
<term>Voltage dependence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transistor</term>
<term>Composé III-V</term>
<term>Effet Rashba</term>
<term>Couplage spin spin</term>
<term>Electronique spin</term>
<term>Calcul quantique</term>
<term>Système 2 dimensions</term>
<term>Polarisation spin</term>
<term>Effet champ électrique</term>
<term>Champ température</term>
<term>Couche épitaxique</term>
<term>Couche mince</term>
<term>Injection spin</term>
<term>Flexion</term>
<term>Nitrure d'indium</term>
<term>Tellurure de gallium</term>
<term>Liquide ionique</term>
<term>Electrode commande</term>
<term>Dépendance tension</term>
<term>Potentiel polarisation</term>
<term>InN</term>
<term>8535</term>
<term>8575</term>
<term>8565</term>
<term>8570E</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electrically manipulating electron spins based on Rashba spin-orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an electric field perpendicular to the 2DES. Here, by measuring the tunable circular photogalvanic effect (CPGE), we present a room-temperature electric-field-modulated spin splitting of surface electrons on InN epitaxial thin films that is a good candidate to realize spin injection. The surface band bending and resulting CPGE current are successfully modulated by ionic liquid gating within an electric double-layer transistor configuration. The clear gate voltage dependence of CPGE current indicates that the spin splitting of the surface electron accumulation layer is effectively tuned, providing a way to modulate the injected spin polarization in potential spintronic devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Tunable Surface Electron Spin Splitting with Electric Double-Layer Transistors Based on InN</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHUNMING YIN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HONGTAO YUAN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XINQIANG WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHITAO LIU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHAN ZHANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NING TANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FUJUN XU</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ZHUOYU CHEN</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SHIMOTANI (Hidekazu)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>IWASA (Yoshihiro)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>YONGHAI CHEN</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>WEIKUN GE</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>BO SHEN</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University</s1>
<s2>Beijing, 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo</s1>
<s2>Tokyo, 113-8656</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratory of Semiconductor Materials Science, Institute of Semiconductors, CAS</s1>
<s2>Beijing, 100083</s2>
<s3>CHN</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, Tsinghua University</s1>
<s2>Beijing, 100084</s2>
<s3>CHN</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s1>2024-2029</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000503816320240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0219751</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electrically manipulating electron spins based on Rashba spin-orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an electric field perpendicular to the 2DES. Here, by measuring the tunable circular photogalvanic effect (CPGE), we present a room-temperature electric-field-modulated spin splitting of surface electrons on InN epitaxial thin films that is a good candidate to realize spin injection. The surface band bending and resulting CPGE current are successfully modulated by ionic liquid gating within an electric double-layer transistor configuration. The clear gate voltage dependence of CPGE current indicates that the spin splitting of the surface electron accumulation layer is effectively tuned, providing a way to modulate the injected spin polarization in potential spintronic devices.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F12</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transistor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Transistor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transistor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet Rashba</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Rashba effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couplage spin spin</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>JJ coupling</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Acoplamiento spin spin</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Electronique spin</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Spintronics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Electrónica de espin</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Calcul quantique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Quantum computation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Calculo cuántico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Système 2 dimensions</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Two dimensional system</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sistema 2 dimensiones</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Polarisation spin</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Spin polarization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Polarización spin</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Effet champ électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electric field effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Efecto campo eléctrico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Champ température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Temperature distribution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Campo temperatura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche épitaxique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Epitaxial film</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa epitáxica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Injection spin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Spin injection</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Flexion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Bending</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Flexión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Tellurure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium tellurides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Liquide ionique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Ionic liquid</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Líquido iónico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Electrode commande</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gates</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Dépendance tension</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Voltage dependence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Potentiel polarisation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Polarization potential</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Potencial polarización</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8575</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>8565</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>8570E</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>203</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000063 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000063 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0219751
   |texte=   Tunable Surface Electron Spin Splitting with Electric Double-Layer Transistors Based on InN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024